MULTIPLE IMPUTATION OF ORDINAL VARIABLES USING ADAPTIVE THRESHOLDS

Lynne Moore PhD, James Hanley PhD, André Lavoie PhD, Alexis Turgeon MD MSc, FRCPC

Affiliations:
Department of Biostatistics and Epidemiology, McGill University
Unité de Traumatologie-Urgence-Soins Intensifs du CHA, Université Laval

Funding:
Canadian Institutes of Health Research
Fonds de la Recherche en Santé du Québec
Context

- Ordinal variable (non-Gaussian distribution) with missing data
- Multiple Imputation under a multivariate normal model
Possible strategies

• Single linear term
• K-1 dummy variables:
 – Impute k-1 dummy variables
 – Transform back using threshold 0.5
Problem

Conventional threshold of 0.5 may not work well for proportions close to 0 or 1
Potential solution

Adaptive thresholds:

\[C(p) = p - \Phi^{-1}(p) \times \sqrt{p(1-p)} \]
OBJECTIVE

Evaluate the performance of adaptive thresholds for imputing data measured on an ordinal scale
METHODS
Study data

- Trauma registry of the level I trauma center in Quebec City 1999-2006
- Glasgow Coma Score (GCS: 3-15)
- Use observations with observed GCS (60%)
- Impose 40% missing data completely at random
Multiple imputation

• Series of 12 dummy variables
• MCMC (Multivariate normal model)
• EM starting values
• Non-informative prior
• Single chain
• 5 imputes
Specification of the GCS

- Single linear term
- 12 dummy variables back-transformed using:
 - Conventional threshold of 0.5
 - Adaptive thresholds
Auxiliary variables

- Age
- New Injury Severity Score
- Systolic blood pressure
- Respiratory rate
- Pupil reaction
- Transfer status
- Injury mechanism
- Destination on discharge
RESULTS
Results

- 4,720 / 7,867 (60%) with non missing GCS
- 1,888 (40%) missing GCS imposed
- Autocorrelation and time series plots OK
- relative efficiency > 95%
Observed and simulated frequency distribution of the Glasgow Coma Score
Summary

• MI Software often limited to multivariate normal model for arbitrary missing data patterns
• Model specification for ordinal data?
• Study results suggest:
 – Single linear terms inappropriate
 – Dummy variables back-transformed using p=0.5 can lead to biased frequency distributions
 – Dummy variables back-transformed using adaptive thresholds lead to valid frequency distributions
Limitations and future directions

- Only one variable and one sample used
- Data Missing Completely At Random
- Impact on regression coefficients (e.g. association with mortality)?
Results suggest that ordinal data can be imputed in a multivariate normal model using dummy variables providing adaptive thresholds are used.
Thank You!
Maximum imputed value

Log (percent)

Observed with 95% confidence intervals

Maximum imputed value

Glasgow Coma Scale

Maximum imputed value