Design and testing for clinical trials faced with misclassified causes-of-death

Bart Van Rompaye1 \hspace{1cm} Els Goetghebeur1 \hspace{1cm} Shabbar Jaffar2

1Department of Applied Mathematics and Computer Science, Ghent University, Ghent, Belgium
2Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, U.K.
Problem description

Interest in cause-specific mortality

- this is what is affected by exposure

Fallable cause-of-death assessment

- death certificates
- clinical trials
- ...

\Rightarrow verbal autopsy: sensitivity as low as 50%

\Rightarrow cause-specific survival analysis gives biased estimate and power loss

Options:

- all-cause analysis
- correct for the risk of misclassification
Problem description

Interest in cause-specific mortality

- this is what is affected by exposure

Fallable cause-of-death assessment

- death certificates
- clinical trials

⇒ verbal autopsy: sensitivity as low as 50%
⇒ cause-specific survival analysis gives biased estimate and power loss

Options:

- all-cause analysis
- correct for the risk of misclassification
Interest in **cause-specific mortality**
- this is what is affected by exposure

Fallable cause-of-death assessment
- death certificates
- clinical trials
- ...

⇒ verbal autopsy: sensitivity as low as 50%
⇒ cause-specific survival analysis gives biased estimate and power loss

Options:
- all-cause analysis
- correct for the risk of misclassification
Problem description

Interest in **cause-specific mortality**
- this is what is affected by exposure

Fallow cause-of-death assessment
- death certificates
- clinical trials
- ...

⇒ verbal autopsy: sensitivity as low as 50%
⇒ cause-specific survival analysis gives **biased estimate** and **power loss**

Options:
- all-cause analysis
- correct for the risk of misclassification
Motivating study: Jaffar et al., *I.J.E.* 2003

- Impact of a vaccine on mortality from airway infections in Gambian children
- Phase III randomized, placebo controlled trial
- Need for ‘post-mortem questionnaires’ or ‘verbal autopsy’
- 2 CODs:
 \[
 \begin{align*}
 \lambda_{dfd} &= \frac{5.9}{1000 \text{py}} \\
 \lambda_{doc} &= \frac{27.5}{1000 \text{py}}
 \end{align*}
 \]
Motivating study: Jaffar et al., *I.J.E.* 2003

- Impact of a vaccine on mortality from airway infections in Gambian children
- Phase III randomized, placebo controlled trial
- Need for ‘post-mortem questionnaires’ or ‘verbal autopsy’

<table>
<thead>
<tr>
<th></th>
<th>[\lambda_{dfd} = \frac{5.9}{1000\text{py}}]</th>
<th>[\lambda_{doc} = \frac{27.5}{1000\text{py}}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>[\lambda_{dfd} = \frac{5.9}{1000\text{py}} \times 0.685 = \frac{4.0}{1000\text{py}}]</td>
<td>[\lambda_{doc} = \frac{27.5}{1000\text{py}}]</td>
</tr>
</tbody>
</table>

Misclassification of causes

- Sensitivity = 0.4
- Specificity = 0.9
- Power: 87% ↓ to 25%
Motivating study: Jaffar et al., *I.J.E*. 2003

- impact of a vaccine on mortality from airway infections in Gambian children
- phase III randomized, placebo controlled trial
- need for ‘post-mortem questionnaires’ or ‘verbal autopsy’

2 CODs:

\[
\begin{align*}
\lambda_{dfd} &= \frac{5.9}{1000\text{py}} \\
\lambda_{doc} &= \frac{27.5}{1000\text{py}}
\end{align*}
\]

- treatment

\[
\begin{align*}
\lambda_{dfd} &= \frac{5.9}{1000\text{py}} \cdot 0.685 = \frac{4.0}{1000\text{py}} \\
\lambda_{doc} &= \frac{27.5}{1000\text{py}}
\end{align*}
\]

- misclassification of causes

 \[\Rightarrow \text{sensitivity}=0.4\]
 \[\text{specificity}=0.9\]

 \[\Rightarrow \text{power: } 87\% \downarrow 25\%\]
Problem description

Power for a naive cause-specific logrank test

sensitivity \(= 0.4\)

specificity \(= 0.9\)

\(\downarrow\)

power \(= 25\%\)
Problem description

Power for a naive cause-specific logrank test

sensitivity = 0.4
specificity = 0.9
\[\downarrow\]
power = 25%

All-cause logrank: 23%!
Impact on design: choice of primary outcome

Cutts et al., *Lancet* 2005

cause-specific mortality: power loss
⇒
all-cause mortality: sample size
⇒
primary endpoint: radiological pneumonia (!)

⇒ ITT-result: significant reduction
Impact on design: choice of primary outcome

Cutts et al., *Lancet* 2005

cause-specific mortality: power loss

⇓

all-cause mortality: sample size

⇓

primary endpoint: radiological pneumonia (!)

⇒ ITT-result: significant reduction

misclassification determines design and analysis!
Our approach

- keep CS mortality as focus
- acknowledge the misclassification rates
- adapt the analysis (and design)

→

- recover power
- reduce bias

→

- enough to tip the balance?
Design assumptions

- 2 sets of covariates Z (works on dfd) and X (works on doc)
- observation time T
- failure indicator δ: 0=censored, 1=failure
- true cause-of-death COD_{true}: doc or dfd
 \Rightarrow observed COD = COD_{obs}

\Rightarrow observed data: $(Z, X, T, \delta, COD_{obs})$
Design assumptions

Assumptions: similar to Goetghebeur and Ryan, *Biometrika* 1995

- misclassification probabilities may depend on the true COD: $p_0(t)$ and $p_1(t)$
- failure patterns from proportional cause-specific hazards:
 \[
 h_{dfd}(t; \mathbf{Z}(t)) = e^{\phi^T \mathbf{Z}(t)} h_{dfd}(t)
 \]
 \[
 h_{doc}(t; \mathbf{X}(t)) = e^{\rho^T \mathbf{X}(t)} h_{doc}(t)
 \]

\[
 h_{doc}(t) = h_{dfd}(t)e^{-\xi(t)}
 \]
Design assumptions

Assumptions: similar to Goetghebeur and Ryan, *Biometrika* 1995

- misclassification probabilities may depend on the true COD: $p_0(t)$ and $p_1(t)$
- failure patterns from proportional cause-specific hazards:

\[
\begin{align*}
h_{dfd}(t; Z(t)) &= e^{\phi^T z(t)} h_{dfd}(t) \\
h_{doc}(t; X(t)) &= e^{\rho^T x(t)} h_{doc}(t)
\end{align*}
\]

\[
h_{doc}(t) = h_{dfd}(t)e^{-\xi(t)}
\]
Design assumptions

Assumptions: similar to Goetghebeur and Ryan, *Biometrika* 1995

- misclassification probabilities may depend on the true COD: $p_0(t)$ and $p_1(t)$
- failure patterns from proportional cause-specific hazards:

$$h_{dfd}(t; \mathbf{Z}(t)) = e^{\phi^T \mathbf{Z}(t)} h_{dfd}(t)$$
$$h_{doc}(t; \mathbf{X}(t)) = e^{\rho^T \mathbf{X}(t)} h_{doc}(t)$$

$$h_{doc}(t) = h_{dfd}(t) e^{-\xi(t)}$$
Design assumptions

Assumptions: similar to Goetghebeur and Ryan, *Biometrika* 1995

- misclassification probabilities may depend on the true COD: $p_0(t)$ and $p_1(t)$
- **failure patterns** from proportional cause-specific hazards:

\[
\begin{align*}
h_{dfd}(t; \mathbf{Z}(t)) & = e^{\phi^T \mathbf{Z}(t)} h_{dfd}(t) \\
h_{doc}(t; \mathbf{X}(t)) & = e^{\rho^T \mathbf{X}(t)} h_{doc}(t) \\
\end{align*}
\]

\[
h_{doc}(t) = h_{dfd}(t)e^{-\xi(t)}
\]
Design assumptions

Assumptions: similar to Goetghebeur and Ryan, *Biometrika* 1995

- misclassification probabilities may depend on the true COD: $p_0(t)$ and $p_1(t)$
- failure patterns from proportional cause-specific hazards:

\[
\begin{align*}
 h_{dfd}(t; \mathbf{Z}(t)) &= e^{\phi^T \mathbf{Z}(t)} h_{dfd}(t) \\
 h_{doc}(t; \mathbf{X}(t)) &= e^{\rho^T \mathbf{X}(t)} h_{doc}(t)
\end{align*}
\]

\[h_{doc}(t) = h_{dfd}(t) e^{-\xi} \]
Partial likelihood

\[L = \prod_{i=1}^{n} \left(\frac{\sum_{j=1}^{n} Y_j(t) \left[e^{-\xi} e^{\rho^T X_i(t)} (1 - p_0(t)) + e^{\phi^T Z_i(t)} p_1(t) \right]}{\sum_{j=1}^{n} Y_j(t) \left[e^{-\xi} e^{\rho^T X_j(t)} (1 - p_0(t)) + e^{\phi^T Z_j(t)} p_1(t) \right]} \right)^{dN_{i0}(t)} \]

no misclassification:

\[L = \prod_{i:COD_{true,i}=d} \frac{e^{\phi^T Z_i(t)}}{\sum_{j \in R_i} e^{\phi^T Z_j(t)}} \]
Partial likelihood

\[
L = \prod_{i=1}^{n} \left(\frac{e^{-\xi} e^{\rho^T \mathbf{x}_i(t)} (1 - p_0(t)) + e^{\phi^T \mathbf{z}_i(t)} p_1(t)} {\sum_{j=1}^{n} Y_j(t) \left[e^{-\xi} e^{\rho^T \mathbf{x}_j(t)} p_0(t) + e^{\phi^T \mathbf{z}_j(t)} (1 - p_1(t)) \right]} \right)^{dN_i(t)}
\]

condition on type of event:

\[P(i \text{ has event of type } j \text{ at } t_i \mid \text{someone in risk set has event of type } j \text{ at } t_i)\]

no misclassification:

\[
L = \prod_{i: \text{COD}_{\text{true},i} = \text{dfd}} \frac{e^{\phi^T \mathbf{z}_i(t)}} {\sum_{j \in \mathcal{R}_i} e^{\phi^T \mathbf{z}_j(t)}}
\]
Partial likelihood

\[L = \prod_{i=1}^{n} \left(\frac{e^{-\xi e^T X_i(t)(1 - p_0(t))} + e^{\phi^T Z_i(t)p_1(t)}}{\sum_{j=1}^{n} Y_j(t) \left[e^{-\xi e^T X_j(t)(1 - p_0(t))} + e^{\phi^T Z_j(t)p_1(t)} \right]} \right)^{dN_{i0}(t)} \]

\[\prod_{i=1}^{n} \left(\frac{e^{-\xi e^T X_i(t)p_0(t)} + e^{\phi^T Z_i(t)(1 - p_1(t))}}{\sum_{j=1}^{n} Y_j(t) \left[e^{-\xi e^T X_j(t)p_0(t)} + e^{\phi^T Z_j(t)(1 - p_1(t))} \right]} \right)^{dN_{i1}(t)} \]

no misclassification:

\[L = \prod_{i:COD_{\text{true},i}=\text{dfd}} \frac{e^{\phi^T Z_i(t)}}{\sum_{j \in \mathcal{R}_i} e^{\phi^T Z_j(t)}} \]
Problem description

Design assumptions

Likelihood inference

Case study

Discussion

Partial likelihood

\[
L = \prod_{i=1}^{n} \left(\frac{e^{-\xi} e^{\rho^T X_i(t)} (1 - p_0(t)) + e^{\phi^T Z_i(t)p_1(t)}}{\sum_{j=1}^{n} Y_j(t) \left[e^{-\xi} e^{\rho^T X_j(t)} (1 - p_0(t)) + e^{\phi^T Z_j(t)p_1(t)} \right]} \right)^{dN_{i0}(t)}
\]

\[
\prod_{i=1}^{n} \left(\frac{e^{-\xi} e^{\rho^T X_i(t)} p_0(t) + e^{\phi^T Z_i(t)} (1 - p_1(t))}{\sum_{j=1}^{n} Y_j(t) \left[e^{-\xi} e^{\rho^T X_j(t)} p_0(t) + e^{\phi^T Z_j(t)} (1 - p_1(t)) \right]} \right)^{dN_{i1}(t)}
\]

no misclassification:

\[
L = \prod_{i: COD_{true, i} = dfd} \frac{e^{\phi^T Z_i(t)}}{\sum_{j \in R_i} e^{\phi^T Z_j(t)}}
\]
Partial likelihood

\[L = \prod_{i=1}^{n} \left(\frac{e^{-\xi \rho^T x_i(t)} (1 - p_0(t)) + e^{\phi^T z_i(t)} p_1(t)}{\sum_{j=1}^{n} Y_j(t) \left[e^{-\xi \rho^T x_j(t)} (1 - p_0(t)) + e^{\phi^T z_j(t)} p_1(t) \right]} \right)^{dN_{i0}(t)} \]

\[\prod_{i=1}^{n} \left(\frac{e^{-\xi \rho^T x_i(t)} p_0(t) + e^{\phi^T z_i(t)} (1 - p_1(t))}{\sum_{j=1}^{n} Y_j(t) \left[e^{-\xi \rho^T x_j(t)} p_0(t) + e^{\phi^T z_j(t)} (1 - p_1(t)) \right]} \right)^{dN_{i1}(t)} \]

no misclassification:

\[L = \prod_{i:COD_{true,i}=dfd} \frac{e^{\phi^T z_i(t)}}{\sum_{j \in R_i} e^{\phi^T z_j(t)}} \]
Partial likelihood

\[
L = \prod_{i=1}^{n} \left(\frac{e^{-\xi} e^{\rho^T X_i(t)}(1 - p_0(t)) + e^{\phi^T Z_i(t)} p_1(t)}{\sum_{j=1}^{n} Y_j(t) \left[e^{-\xi} e^{\rho^T X_j(t)}(1 - p_0(t)) + e^{\phi^T Z_j(t)} p_1(t) \right]} \right)^{dN_{i0}(t)}
\]

\[
\prod_{i=1}^{n} \left(\frac{e^{-\xi} e^{\rho^T X_i(t)} p_0(t) + e^{\phi^T Z_i(t)}(1 - p_1(t))}{\sum_{j=1}^{n} Y_j(t) \left[e^{-\xi} e^{\rho^T X_j(t)} p_0(t) + e^{\phi^T Z_j(t)}(1 - p_1(t)) \right]} \right)^{dN_{i1}(t)}
\]

no misclassification:

\[
L = \prod_{i:COD_{true,i}=\text{dfd}} \frac{e^{\phi^T Z_i(t)}}{\sum_{j \in \mathcal{R}_i} e^{\phi^T Z_j(t)}}
\]
Partial likelihood

\[L = \prod_{i=1}^{n} \left(\frac{e^{-\xi \rho^T X_i(t)(1 - p_0(t)) + \phi^T Z_i(t) p_1(t)}}{\sum_{j=1}^{n} Y_j(t) \left[e^{-\xi \rho^T X_j(t) p_0(t)} + \phi^T Z_j(t) (1 - p_1(t)) \right]} \right)^{dN_{i0}(t)} \]

condition on ANY event:
\[P(i \text{ has event of type } j \text{ at } t_i \mid \text{someone in risk set has an event at } t_i) \]

no misclassification:
\[L = \prod_{i:COD_{true},i=\text{dfd}} \frac{e^{\phi^T Z_i(t)}}{\sum_{j \in R_i} e^{\phi^T Z_j(t)}} \]
Partial likelihood

\[
L = \prod_{i=1}^{n} \left(\frac{e^{-\xi} e^{\rho^T x_i(t)}(1 - p_0(t)) + e^{\phi^T z_i(t)} p_1(t)}{\sum_{j=1}^{n} Y_j(t) \left[e^{-\xi} e^{\rho^T x_j(t)}(1 - p_0(t)) + e^{\phi^T z_j(t)} p_1(t) \right]} \right)^{dN_i(t)}
\]

\[
\prod_{i=1}^{n} \left(\frac{e^{-\xi} e^{\rho^T x_i(t)} p_0(t) + e^{\phi^T z_i(t)}(1 - p_1(t))}{\sum_{j=1}^{n} Y_j(t) \left[e^{-\xi} e^{\rho^T x_j(t)} p_0(t) + e^{\phi^T z_j(t)}(1 - p_1(t)) \right]} \right)^{dN_i(t)}
\]

no misclassification:

\[
L = \prod_{i: COD_{true,i} = df} \frac{e^{\phi^T z_i(t)}}{\sum_{j \in R_i} e^{\phi^T z_j(t)}
\]

bart.vanrompaye@ugent.be
Misclassification in cause-specific survival analysis
Partial likelihood

\[
L = \prod_{i=1}^{n} \frac{e^{-\xi} e^{\rho^T x_i(t)} (1 - p_0(t)) + e^{\phi^T z_i(t)} p_1(t)}{\sum_{j=1}^{n} Y_j(t) \left[e^{-\xi} e^{\rho^T x_j(t)} p_0(t) + e^{\phi^T z_j(t)} (1 - p_1(t)) \right]} \, dN_{i0}(t) \\
\prod_{i=1}^{n} \frac{e^{-\xi} e^{\rho^T x_i(t)} p_0(t) + e^{\phi^T z_i(t)} (1 - p_1(t))}{\sum_{j=1}^{n} Y_j(t) \left[e^{-\xi} e^{\rho^T x_j(t)} p_0(t) + e^{\phi^T z_j(t)} (1 - p_1(t)) \right]} \, dN_{i1}(t)
\]

Estimating equations: \[\left(\frac{\partial L}{\partial \phi}, \frac{\partial L}{\partial \rho}, \frac{\partial L^*}{\partial \xi} \right) = 0 \]

no misclassification:

\[
L = \prod_{i:COD_{true},i=0} \frac{e^{\phi^T z_i(t)}}{\sum_{j \in R_i} e^{\phi^T z_j(t)}} \]

bart.vanrompaye@ugent.be

Misclassification in cause-specific survival analysis

9/17
Case study: Jaffar et al., *I.J.E.* 2003

Testing one binary Z, no X

Score statistic:

$$\frac{T^n}{\sqrt{V^n}} = \frac{\sum_{i=1}^{\delta_i} w_i(t_i, COD_{obs,i})(Z_i - \bar{Z}_i)}{\sqrt{\sum_{i=1}^{\delta_i} w_i^2(t_i, COD_{obs,i}) \left[\left(\sum_{j \in R_i} Z_j^2 / n_i \right) - \bar{Z}_i^2 \right]}}$$

with:

$$w_i(\xi, p_0(t_i), p_1(t_i)) = \begin{cases}
COD_{obs,i} = doc : 1 \text{ - negative predictive value} \\
COD_{obs,i} = dfd : \text{positive predictive value}
\end{cases}$$

under H_0: \[\hat{\xi} = -\log \left(\frac{O_1 p_1 - O_0 (1 - p_1)}{O_0 p_0 - O_1 (1 - p_0)} \right)\]
Case study: Jaffar et al., *I.J.E.* 2003

Testing one binary \(Z \), no \(X \)

Score statistic:

\[
\frac{T^n}{\sqrt{V^n}} = \frac{\sum_{\delta_i=1}^n w_i(t_i, \text{COD}_{obs,i})(Z_i - \bar{Z}_i)}{\sqrt{\sum_{\delta_i=1}^n w_i^2(t_i, \text{COD}_{obs,i}) \left[\left(\sum_{j \in R_i} Z_j^2/n_i \right) - \bar{Z}_i^2 \right]}}
\]

with:

\[
w_i(\xi, p_0(t_i), p_1(t_i)) = \begin{cases}
\text{COD}_{obs,i} = \text{doc} : 1 - \text{negative predictive value} \\
\text{COD}_{obs,i} = \text{dfd} : \text{positive predictive value}
\end{cases}
\]

under \(H_0 : \) \(\hat{\xi} = - \log \left(\frac{O_1 p_1 - O_0 (1 - p_1)}{O_0 p_0 - O_1 (1 - p_0)} \right) \)
Case study: Jaffar et al., *I.J.E.* 2003

Testing one binary Z, no X

Asymptotic relative (Pitman) efficiencies: $\text{are}(1, 2) = \lim_{\phi \to \infty} \frac{n_{\phi, 2}}{n_{\phi, 1}}$

<table>
<thead>
<tr>
<th></th>
<th>naive</th>
<th>all-cause</th>
<th>corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>naive</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>all-cause</td>
<td>0.96</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>corrected</td>
<td>1.41</td>
<td>1.47</td>
<td>1</td>
</tr>
</tbody>
</table>

\Rightarrow Sample size for 80% power?

- naive: 123,516
- corrected: 87,600
- all-cause: 128,824
Case study: Jaffar et al., *I.J.E.* 2003

Testing one binary Z, no X

Asymptotic relative (Pitman) efficiencies:

$$\text{are}(1, 2) = \lim_{\phi \to \infty} \frac{n_\phi, 2}{n_\phi, 1}$$

<table>
<thead>
<tr>
<th></th>
<th>naive</th>
<th>all-cause</th>
<th>corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>naive</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>all-cause</td>
<td>0.96</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>corrected</td>
<td>1.41</td>
<td>1.47</td>
<td>1</td>
</tr>
</tbody>
</table>

\Rightarrow Sample size for 80% power?

- naive: 123,516
- corrected: 87,600
- all-cause: 128,824
Case study: Jaffar et al., *I.J.E.* 2003

Estimating one binary Z, no X

ϕ estimation:
- less bias
- less precision
Case study: Cutts et al., *the Lancet*, 2005

- 17,433 individuals, equally divided over genders and treatments
- 917 deaths, of which 186 ALRI

One binary treatment

<table>
<thead>
<tr>
<th>Method</th>
<th>p-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>naive cause-specific logrank</td>
<td>0.373</td>
</tr>
<tr>
<td>our logrank method</td>
<td>0.055</td>
</tr>
<tr>
<td>our Cox model</td>
<td>0.052</td>
</tr>
</tbody>
</table>
Case study: Cutts et al., *the Lancet*, 2005

- 17,433 individuals, equally divided over genders and treatments
- 917 deaths, of which 186 ALRI

One binary treatment

<table>
<thead>
<tr>
<th>Method</th>
<th>p-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>naive cause-specific logrank</td>
<td>0.373</td>
</tr>
<tr>
<td>our logrank method</td>
<td>0.055</td>
</tr>
<tr>
<td>our Cox model</td>
<td>0.052</td>
</tr>
<tr>
<td>all-cause logrank</td>
<td>0.029</td>
</tr>
</tbody>
</table>
Case study: Cutts et al., *the Lancet*, 2005

- 17,433 individuals, equally divided over genders and treatments
- 917 deaths, of which 186 ALRI

One binary treatment

<table>
<thead>
<tr>
<th>p-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>naive cause-specific logrank</td>
</tr>
<tr>
<td>0.373</td>
</tr>
<tr>
<td>our logrank method</td>
</tr>
<tr>
<td>0.055</td>
</tr>
<tr>
<td>our Cox model</td>
</tr>
<tr>
<td>0.052</td>
</tr>
<tr>
<td>all-cause logrank</td>
</tr>
<tr>
<td>0.029</td>
</tr>
</tbody>
</table>

⇒ how strong is the 'double signal'? ⇒ Cox model!
Case study: Cutts et al., *the Lancet*, 2005

One binary treatment, influencing both causes

cause-of-interest: \(e^\hat{\phi} = 0.889 \) (p-value 0.67)

competing risk: \(e^\hat{\rho} = -0.853 \) (p-value 0.27)

⇒ indicates structure beyond logrank assumption

⇒ Cox model potentially offers added value
Discussion

Constant relative baseline cause-specific hazards?

- simple approximation for design purposes
- not necessary: e.g. piecewise constant hazard ratios are simple alternative

Knowledge of misclassification probabilities

- p_0 and p_1 not always available
 - \Rightarrow pilot study with gold standard: estimate p_0 and p_1
 - \Rightarrow then continue with routine diagnosis

- Details to be worked out:
 - size of the pilot sample
 - further use of the pilot data
What to remember

- misclassification occurs routinely
- it leads to loss of power and bias
- under some assumptions a corrected inference can lead to
 - much smaller needed sample sizes
 - more meaningful inference

choice of primary endpoint can be affected:
- back to mortality rather than morbidity endpoint
- cause-specific analysis becomes more attractive!
What to remember

- misclassification occurs routinely
- it leads to loss of power and bias
- under some assumptions a corrected inference can lead to
 - much smaller needed sample sizes
 - more meaningful inference

choice of primary endpoint can be affected:
- back to mortality rather than morbidity endpoint
- cause-specific analysis becomes more attractive!
Acknowledgements

- funding: Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen)
- accommodation: CenStat at Hasselt University

