Multiplicity Issues in Biologics Clinical Trials: Regulatory Perspectives

Sang Ahnn, Ph.D., John Scott, Ph.D.
Henry Shih-Houng Hsu, Ph.D. MPH

Director, Division of Biostatistics
Center for Biologics Evaluation and Research
U.S. Food and Drug Administration

The views expressed in this presentation are those of the speaker and do not necessarily reflect policies of the U.S. Food and Drug Administration.
Outlines

FDA/CBER/Division of Biostatistics

Multiplicity Issues/Guidance in Clinical Trials

Multiplicity Issues in Vaccine Trials:

- Combination vaccines
- Vaccines with multiple serotypes
- Therapeutic vaccines
- Concomitant vaccines
- Composite endpoints in vaccine trials
Food and Drug Administration (FDA)

- Center for Biologics Evaluation and Research (CBER)
 - Office of Vaccines Research and Review
 - Office of Blood Research and Review
 - Office of Cellular, Tissue, and Gene Therapy
- Center for Devices and Radiological Health (CDRH)
- Center for Drug Evaluation and Research (CDER)
- Center for Food Safety and Applied Nutrition (CFSAN)
- Center for Veterinary Medicine (CVM)
- National Center for Toxicological Research (NCTR)
CBER Division of Biostatistics

- Vaccine Evaluation Branch supports the Office of Vaccines Research and Review
 - Viral and Bioassay Team
 - Bacterial and Allergenic Team

- Therapeutics Evaluation Branch supports the Office of Cellular, Tissue and Gene Therapies and the Office of Blood Research and Review
 - Blood Therapeutics and Devices Team
 - Diagnostics and Screening Tests Team
 - OCTGT Therapeutics and Devices Team
Statistical Review
Vaccine Products/Disease Areas

- Bioterrorism/Pandemic (Smallpox, Anthrax, Plague, Influenza, Botulism)
- Prophylactic Vaccines: (Hepatitis, Meningococcal, Pneumococcal, HIV, Human Papillomavirus, Measles / Mumps / Rubella / Varicella, Diphtheria / Tetanus / Pertussis, Poliovirus)
- Cancer Vaccines (Prostate, Lymphomas, Melanomas)
Statistical Review
Other Products/Disease Areas

- Tissue/Cell Therapy (Islets transplantation in Type I Diabetes)
- In Vitro Diagnostic Test Kits for blood safety (HIV, Hepatitis, West Nile Virus, Human T-Lymphotropic Virus)
- Devices used in processing blood products or in delivery of a biologic at point of care
Multiplicity Issues

- Multiple Endpoints in studies
- Composite endpoints
- Primary and secondary endpoint(s)
- Multiple Trials
- Subgroup Analyses
General Guidance

- Type I error rate for each elementary hypothesis must be controlled at $\leq \alpha$ (.05, .01, .001, ...)

- Family of comparisons: Doses and endpoints under testing are all considered in the family (including all intersection hypotheses)

- Control study-level (family-wise) type I error rate (i.e., max type I error rate) at $\leq \alpha$ (.05, .01, .001)

- “Strong control”
Strong control

- Strong control at the study level treats all studies ‘equally’ in regulatory applications.
- For each trial, the more hypotheses are tested, the more statistical adjustments and more planning on statistical decision tree needed.
- A principle generally followed by the statistical community is to control “experiment-wise” type I error rate, as the clinical trial is an experiment.
- Doesn’t control multiplicity on multiple trials.
Multiplicity and Type I & Type II Errors

- Multiplicity poses a critical challenge to product licensing
- We simultaneously recognize the genuine scientific need for multiple endpoints in a variety of contexts, and are also very concerned that all clinical trials maintain adequate control of Type 1 error.
- Maintaining strong control of Type I error in the presence of multiplicity can mean inflation of Type II error: false negatives.
Multiplicity Issues in Vaccine Trials:

- Combination vaccines
- Vaccines with multiple serotypes
- Therapeutic vaccines
- Concomitant vaccines
- Composite endpoints in vaccine trials
Combination Vaccines

- Examples: DTaP, MMRV, DTaP/IPV, DTaP/HBV/IPV, MMRV vs. MMR + Varicella
- Need to be non-inferior for each of the diseases (components) when compared to separate administrations
- Potential interactions/interference between the vaccine components
- Safety
Vaccines with Multiple Serotypes

- Comparison between licensed n-valent vs. new (n+k)-valent

- Examples:
 - Pneumococcal 7-valent vs. 13-valent
 - Influenza trivalent vs. quadrivalent
 - H1N1/H3N2/B vs.
 - H1N1/H3N2/B1/B2
 - H1N1/H3N2/B1
 - H1N1/H3N2/B2
Vaccines with Multiple Serotypes (2)

- When compared to licensed vaccine, non-inferiority test for core serotypes is considered. Then, what would be the endpoint(s) for additional serotypes?
- When adding new serotype(s), how to evaluate risk/benefit?
- Sample size/Power issues
Therapeutic Vaccines

- Examples:
 - HIV
 - Herpes virus
 - Tumor vaccines

- Multiple relevant efficacy endpoints:
 - Overall survival
 - Progression-free survival
 - Morbidity
 - Response rate, duration
 - CD4 counts, viral load, … → definite endpoint

- Withdrawal is an important factor for the choice of endpoints.
Concomitant vaccines

- **Examples:**
 - DTaP+Hib+IPV+PCV7
 - Hib+PCV7+MMR

- **Evaluate safety in particular and immunogenicity in the presence of concomitant vaccines**

- **Interaction(s):** When multiple vaccines are concomitantly administered, some vaccinees may exhibit reduced immune response or increased reactogenicity
Multiple vs. Composite Endpoints

- Test two or more separate endpoints:
 - Combine the results via Fisher’s method or multiplicity adjustment

- Create a single composite measure
 - Capture vaccine effect in more than one dimensions
 - Validation issues

<table>
<thead>
<tr>
<th></th>
<th>CD4 +</th>
<th>CD4 -</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viral Load +</td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Viral Load -</td>
<td>(3)</td>
<td>(4)</td>
</tr>
</tbody>
</table>
Vaccines for diseases with composite endpoints

- For some diseases (such as zoster and HIV), vaccines are targeted to reduce the incidence and/or the severity of the disease (prolong development, delay full blown)
- Combine preventive and therapeutic aspects of a vaccine
- Define a clinically meaningful change in severity endpoints
Subgroup Analyses
Post-hoc subgroup results may show an increase/decrease in efficacy/safety different from overall results

MI-CP111 Safety Results on Safety population
Relative Risk of FluMist to TIV
Based on All-Cause Hospitalization

<table>
<thead>
<tr>
<th>Age (months)</th>
<th>CAIV-T N</th>
<th># of Subjects with All-Cause Hospitalization</th>
<th>TIV N</th>
<th># of Subjects with All-Cause Hospitalization</th>
<th>Relative Risk of FluMist Compared to TIV (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 ~ 59</td>
<td>4179</td>
<td>45 (1.1%)</td>
<td>4173</td>
<td>45(1.1%)</td>
<td>1.00 (0.66, 1.50)</td>
</tr>
<tr>
<td>6 ~ 23</td>
<td>1992</td>
<td>32 (1.6%)</td>
<td>1975</td>
<td>24 (1.2%)</td>
<td>1.32 (0.79, 2.22)</td>
</tr>
<tr>
<td>6 ~ 11</td>
<td>684</td>
<td>15(2.2%)</td>
<td>683</td>
<td>9 (1.3%)</td>
<td>1.66 (0.75, 3.70)</td>
</tr>
<tr>
<td>12 ~ 23</td>
<td>1308</td>
<td>17 (1.3%)</td>
<td>1292</td>
<td>15 (1.2%)</td>
<td>1.12 (0.57, 2.20)</td>
</tr>
</tbody>
</table>
That is it.

Thanks for the time and listening!