Correction for measurement error in nutritional epidemiology
A measurement error model allowing for never-consumers

Ruth Keogh1,2 & Ian White1

1MRC Biostatistics Unit, Cambridge, UK

2MRC Centre for Nutritional Epidemiology in Cancer Prevention and Survival, University of Cambridge

ISCB 2009 Conference
Background and motivation

Question of interest

What is the association between ‘usual’ dietary intake and disease?

‘Usual’ intake of foods and nutrients: Long term average daily intake

EPIC-Norfolk
- European Prospective Investigation into Cancer and Nutrition
- Cohort of 25,000 individuals

UK Dietary Cohort Consortium
- 7 UK cohorts: 153,000 individuals

Measuring dietary intake using diet diaries

- EPIC-Norfolk: 7-day diet diaries
- UK Dietary Cohort Consortium: 4-7 day diet diaries
Measurement error in diet diaries

- A diet diary collects detailed information about dietary intake
- ...but it’s just a ‘snapshot’ of the diet
- Measurements are subject to random within-person error

A specific source of measurement error in diet diaries
- We might not capture consumption of foods which are often not eaten every day, e.g. alcohol, meat
- Distinguish between never-consumers and episodic-consumers

Example: Alcohol intake in EPIC-Norfolk

<table>
<thead>
<tr>
<th>Measurement 1</th>
<th>Measurement 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>> 0</td>
<td>> 0</td>
</tr>
</tbody>
</table>
Measurement error in diet diaries

- A diet diary collects detailed information about dietary intake
- ...but it’s just a ‘snapshot’ of the diet
- Measurements are subject to random within-person error

A specific source of measurement error in diet diaries
- We might not capture consumption of foods which are often not eaten every day, e.g. alcohol, meat
- Distinguish between never-consumers and episodic-consumers

Example: Alcohol intake in EPIC-Norfolk

<table>
<thead>
<tr>
<th>Measurement 1</th>
<th>Measurement 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>> 0</td>
<td>> 0</td>
</tr>
<tr>
<td></td>
<td>531 (21%)</td>
</tr>
<tr>
<td></td>
<td>248 (10%)</td>
</tr>
<tr>
<td></td>
<td>261 (10%)</td>
</tr>
<tr>
<td></td>
<td>1522 (59%)</td>
</tr>
</tbody>
</table>
Measurement error in diet diaries

- A diet diary collects detailed information about dietary intake
- ...but it’s just a ‘snapshot’ of the diet
- Measurements are subject to random within-person error

A specific source of measurement error in diet diaries
- We might not capture consumption of foods which are often not eaten every day, e.g. alcohol, meat
- Distinguish between never-consumers and episodic-consumers

Example: Alcohol intake in EPIC-Norfolk

<table>
<thead>
<tr>
<th>Measurement 1</th>
<th>Measurement 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>> 0</td>
</tr>
<tr>
<td>> 0</td>
<td>531 (21%)</td>
</tr>
<tr>
<td></td>
<td>248 (10%)</td>
</tr>
<tr>
<td>> 0</td>
<td>261 (10%)</td>
</tr>
<tr>
<td></td>
<td>1522 (59%)</td>
</tr>
</tbody>
</table>
Correcting for measurement error

Measurement error results in biased estimates of the diet-disease association

\[
T_i = \text{True average daily intake} \\
R_{ij} = j^{th} \text{ diet diary measurement}, \quad R_i = \{R_{i1}, \ldots, R_{iJ}\} \\
D_i = \text{disease status (0/1)}
\]

True diet-disease association:

\[
\Pr(D_i = 1 | T_i) = \frac{\exp(\alpha + \beta T_i)}{1 + \exp(\alpha + \beta T_i)}
\]

Estimating \(\beta \) when we can’t observe \(T_i \):

\[
\Pr(D_i = 1 | R_i) \approx \frac{\exp(\alpha + \beta E(T_i|R_i))}{1 + \exp(\alpha + \beta E(T_i|R_i))}
\]

This is called regression calibration
Correcting for measurement error

Measurement error results in biased estimates of the diet-disease association

\[T_i = \text{True average daily intake} \]
\[R_{ij} = j^{th} \text{ diet diary measurement, } R_i = \{R_{i1}, \ldots, R_{iJ}\} \]
\[D_i = \text{disease status (0/1)} \]

True diet-disease association:

\[
Pr(D_i = 1 | T_i) = \frac{\exp(\alpha + \beta T_i)}{1 + \exp(\alpha + \beta T_i)}
\]

Estimating \(\beta \) when we can’t observe \(T_i \)

\[
Pr(D_i = 1 | R_i) \approx \frac{\exp(\alpha + \beta E(T_i|R_i))}{1 + \exp(\alpha + \beta E(T_i|R_i))}
\]

This is called regression calibration
Performing the regression calibration

To perform the regression calibration we need to find $E(T_i|R_i)$

Linear regression calibration model

$$T_i = \lambda_0 + \lambda_1^T R_i + e_i$$

To fit this model we need

- to assume $E(R_{ij}|T_i) = T_i$
- ≥ 2 measurements R_{ij}
To perform the regression calibration we need to find $E(T_i|R_i)$

Linear regression calibration model

$$T_i = \lambda_0 + \lambda_1^T R_i + e_i$$

To fit this model we need

- to assume $E(R_{ij}|T_i) = T_i$
- ≥ 2 measurements R_{ij}
Never-consumers and episodic-consumers

Is a linear regression calibration model appropriate when we have never-consumers and episodic-consumers?

Aims

1. Define a measurement error model which allows never- and episodic-consumers
2. Find $E(T_i|R_i)$ so that regression calibration can be performed
Is a linear regression calibration model appropriate when we have never-consumers and episodic-consumers?

Aims

1. Define a measurement error model which allows never- and episodic-consumers
2. Find $E(T_i|R_i)$ so that regression calibration can be performed
Define a measurement error model which allows never- and episodic-consumers?

Aims

1. Define a measurement error model which allows never- and episodic-consumers
2. Find $E(T_i|R_i)$ so that regression calibration can be performed
Never- and episodic-consumers (NEC) model

1. Never-consumers

Assumption: \(T_i = 0 \Rightarrow R_{ij} = 0, \forall j \)

\[u_{0i} = \begin{cases}
1 & \text{if person } i \text{ a never-consumer} \\
0 & \text{if person } i \text{ a consumer}
\end{cases} \]

\[P(u_{0i} = 1) = \frac{1}{1 + e^{\gamma_0}} = H(\gamma_0) \]

2. Episodic-consumers

\[\Pr(R_{ij} = 0 | u_i) = \begin{cases}
1 & \text{if } u_{0i} = 1 \\
H(\gamma_1 + u_{1i}) & \text{if } u_{0i} = 0
\end{cases} \]

3. Measurement error for consumers

\[R_{ij} | u_i \sim N(\gamma_2 + u_{2i}, \sigma_\varepsilon^2) \quad \text{if } R_{ij} > 0 \]

\[(u_{1i}, u_{2i}) \sim BVN \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{u_1}^2 & \rho u_1 u_2 \sigma_{u_1} \sigma_{u_2} \\ \rho u_1 u_2 \sigma_{u_1} \sigma_{u_2} & \sigma_{u_2}^2 \end{pmatrix} \right) \]
Never- and episodic-consumers (NEC) model

1. Never-consumers

Assumption: \(T_i = 0 \Rightarrow R_{ij} = 0, \forall j \)

\[
u_{0i} = \begin{cases}
1 & \text{if person } i \text{ a never-consumer} \\
0 & \text{if person } i \text{ a consumer}
\end{cases}
\]

\[
P(u_{0i} = 1) = \frac{1}{1 + e^{\gamma_0}} = H(\gamma_0)
\]

2. Episodic-consumers

\[
Pr(R_{ij} = 0|u_i) = \begin{cases}
1 & \text{if } u_{0i} = 1 \\
H(\gamma_1 + u_{1i}) & \text{if } u_{0i} = 0
\end{cases}
\]

3. Measurement error for consumers

\[
R_{ij}|u_i \sim N(\gamma_2 + u_{2i}, \sigma^2_\epsilon) \quad \text{if } R_{ij} > 0
\]

\[
(u_{1i}, u_{2i}) \sim BVN \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma^2_{u_1} & \rho_{u_1 u_2} \sigma_{u_1} \sigma_{u_2} \\ \rho_{u_1 u_2} \sigma_{u_1} \sigma_{u_2} & \sigma^2_{u_2} \end{pmatrix}
\]
Never- and episodic-consumers (NEC) model

1. Never-consumers

Assumption: \(T_i = 0 \Rightarrow R_{ij} = 0, \forall j \)

\[
u_{0i} = \begin{cases}
1 & \text{if person } i \text{ a never-consumer} \\
0 & \text{if person } i \text{ a consumer}
\end{cases}
\]

\[
P(u_{0i} = 1) = \frac{1}{1 + e^{\gamma_0}} = H(\gamma_0)
\]

2. Episodic-consumers

\[
\Pr(R_{ij} = 0|u_i) = \begin{cases}
1 & \text{if } u_{0i} = 1 \\
H(\gamma_1 + u_{1i}) & \text{if } u_{0i} = 0
\end{cases}
\]

3. Measurement error for consumers

\[
R_{ij}|u_i \sim N(\gamma_2 + u_{2i}, \sigma^2_\epsilon) \quad \text{if } R_{ij} > 0
\]

\[
(u_{1i}, u_{2i}) \sim BVN \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma^2_{u_1} & \rho_{u_1 u_2} \sigma_{u_1} \sigma_{u_2} \\ \rho_{u_1 u_2} \sigma_{u_1} \sigma_{u_2} & \sigma^2_{u_2} \end{pmatrix} \right)
\]
Fitting the NEC model

- Reported measurements are modelled using \(\mathbf{u}_i = \{u_{0i}, u_{1i}, u_{2i}\} \)
- 7 parameters \(\theta = \{\gamma_0, \gamma_1, \gamma_2, \sigma^2_{u_1}, \sigma^2_{u_2}, \rho_{u_1 u_2}, \sigma^2_{\varepsilon}\} \)

Joint distribution of the \(\mathbf{R}_i \)

\[
f(\mathbf{R}_i) = \{1 - H(\gamma_0)\} \int f(\mathbf{R}_i | \mathbf{u}_i, u_{0i} = 1)f(u_{1i}, u_{2i})d\mathbf{u}_1 d\mathbf{u}_2 \]

Consumers

\[
+ H(\gamma_0) \prod_{j=1}^{J} \left(1 - I(R_{ij} > 0)\right)
\]

Never-consumers

Parameters \(\theta \) can be estimated by maximum likelihood provided we have \(\geq 2 \) measurements \(R_{ij} \)
Finding fitted values $E(T_i|R_i; \theta)$

Assumption

Reported measurements R_{ij} are **unbiased estimates** of true intake T_i

$$T_i = E(R_{ij}|u_i)$$

$$= \begin{cases}
0 & \text{if } u_{0i} = 1 \\
1 - H(\gamma_1 + u_{1i}) (\gamma_2 + u_{2i}) & \text{if } u_{0i} = 0
\end{cases}$$

Fitted values for true intake

$$E(T_i|R_i; \theta) = \frac{\int T_i(u_i) f(R_i|u_i; \theta) f(u_i; \theta) du_i}{\int f(R_i|u_i; \theta) f(u_i; \theta) du_i}$$
Finding fitted values $E(T_i|R_i; \theta)$

Assumption

Reported measurements R_{ij} are **unbiased estimates** of true intake T_i

$$T_i = E(R_{ij}|u_i)$$

$$= \begin{cases}
0 & \text{if } u_{0i} = 1 \\
1 - H(\gamma_1 + u_{1i}) \left(\gamma_2 + u_{2i} \right) & \text{if } u_{0i} = 0
\end{cases}$$

Fitted values for true intake

$$E(T_i|R_i; \theta) = \frac{\int T_i(u_i)f(R_i|u_i; \theta)f(u_i; \theta)du_i}{\int f(R_i|u_i; \theta)f(u_i; \theta)du_i}$$
1. How well can we estimate the parameters of the NEC model?

2. Is the NEC model successful in allowing us to correct for the effects of measurement error on the diet-disease association?

3. How do the results from the NEC model compare with alternative approaches?
Simulation study: Alcohol intake in EPIC-Norfolk

- We fitted the never- and episodic-consumers model for alcohol intake in EPIC-Norfolk
- 2 reported measurements R_{i1}, R_{i2} for a subset of the study population

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_1</td>
<td>2.29 (0.14)</td>
</tr>
<tr>
<td>γ_2</td>
<td>2.55 (0.07)</td>
</tr>
<tr>
<td>σ^2_{u1}</td>
<td>6.90 (0.79)</td>
</tr>
<tr>
<td>σ^2_{u2}</td>
<td>3.66 (0.16)</td>
</tr>
<tr>
<td>$\rho_{u1 u2}$</td>
<td>0.70 (0.01)</td>
</tr>
<tr>
<td>σ^2_ϵ</td>
<td>1.23 (0.06)</td>
</tr>
<tr>
<td>$H(\gamma_0)$</td>
<td>0.08 (0.01)</td>
</tr>
</tbody>
</table>

200 simulated data sets
- 1000 individuals ($i = 1, \ldots, 1000$)
- Obtain true intake T_i
- Obtain reported measurements $R_i = \{R_{i1}, R_{i2}, R_{i3}, R_{i4}\}$

We fit the NEC model using 2 measurements $\{R_{i1}, R_{i2}\}$ and 4 measurements $\{R_{i1}, R_{i2}, R_{i3}, R_{i4}\}$
Simulation study: Alcohol intake in EPIC-Norfolk

- We fitted the never- and episodic-consumers model for alcohol intake in EPIC-Norfolk
- 2 reported measurements R_{i1}, R_{i2} for a subset of the study population

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_1</td>
<td>2.29 (0.14)</td>
</tr>
<tr>
<td>γ_2</td>
<td>2.55 (0.07)</td>
</tr>
<tr>
<td>$\sigma^2_{u_1}$</td>
<td>6.90 (0.79)</td>
</tr>
<tr>
<td>$\sigma^2_{u_2}$</td>
<td>3.66 (0.16)</td>
</tr>
<tr>
<td>$\rho_{u_1u_2}$</td>
<td>0.70 (0.01)</td>
</tr>
<tr>
<td>σ^2_{ε}</td>
<td>1.23 (0.06)</td>
</tr>
<tr>
<td>$H(\gamma_0)$</td>
<td>0.08 (0.01)</td>
</tr>
</tbody>
</table>

200 simulated data sets
- 1000 individuals ($i = 1, \ldots, 1000$)
- Obtain true intake T_i
- Obtain reported measurements $R_i = \{R_{i1}, R_{i2}, R_{i3}, R_{i4}\}$

We fit the NEC model using 2 measurements $\{R_{i1}, R_{i2}\}$ and 4 measurements $\{R_{i1}, R_{i2}, R_{i3}, R_{i4}\}$
Simulation study: Alcohol intake in EPIC-Norfolk

- We fitted the never- and episodic-consumers model for alcohol intake in EPIC-Norfolk
- 2 reported measurements R_{i1}, R_{i2} for a subset of the study population

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_1</td>
<td>2.29 (0.14)</td>
</tr>
<tr>
<td>γ_2</td>
<td>2.55 (0.07)</td>
</tr>
<tr>
<td>σ^2_{u1}</td>
<td>6.90 (0.79)</td>
</tr>
<tr>
<td>σ^2_{u2}</td>
<td>3.66 (0.16)</td>
</tr>
<tr>
<td>ρ_{u1u2}</td>
<td>0.70 (0.01)</td>
</tr>
<tr>
<td>σ^2_ϵ</td>
<td>1.23 (0.06)</td>
</tr>
<tr>
<td>$H(\gamma_0)$</td>
<td>0.08 (0.01)</td>
</tr>
</tbody>
</table>

200 simulated data sets
- 1000 individuals ($i = 1, \ldots, 1000$)
- Obtain true intake T_i
- Obtain reported measurements $R_i = \{R_{i1}, R_{i2}, R_{i3}, R_{i4}\}$

We fit the NEC model using 2 measurements $\{R_{i1}, R_{i2}\}$ and 4 measurements $\{R_{i1}, R_{i2}, R_{i3}, R_{i4}\}$
We fitted the never- and episodic-consumers model for alcohol intake in EPIC-Norfolk

- 2 reported measurements R_{i1}, R_{i2} for a subset of the study population

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_1</td>
<td>2.29 (0.14)</td>
</tr>
<tr>
<td>γ_2</td>
<td>2.55 (0.07)</td>
</tr>
<tr>
<td>σ^2_{u1}</td>
<td>6.90 (0.79)</td>
</tr>
<tr>
<td>σ^2_{u2}</td>
<td>3.66 (0.16)</td>
</tr>
<tr>
<td>$\rho_{u1 u2}$</td>
<td>0.70 (0.01)</td>
</tr>
<tr>
<td>σ^2_ε</td>
<td>1.23 (0.06)</td>
</tr>
<tr>
<td>$H(\gamma_0)$</td>
<td>0.08 (0.01)</td>
</tr>
</tbody>
</table>

200 simulated data sets

- 1000 individuals ($i = 1, \ldots, 1000$)
- Obtain true intake T_i
- Obtain reported measurements $R_i = \{R_{i1}, R_{i2}, R_{i3}, R_{i4}\}$

We fit the NEC model using 2 measurements $\{R_{i1}, R_{i2}\}$ and 4 measurements $\{R_{i1}, R_{i2}, R_{i3}, R_{i4}\}$
Simulation results: Parameter estimates

<table>
<thead>
<tr>
<th>Param</th>
<th>True</th>
<th>Estimates: Mean (SD)</th>
<th>2 measurements</th>
<th>4 measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 measurements</td>
<td>4 measurements</td>
</tr>
<tr>
<td>γ_1</td>
<td>2.29</td>
<td>2.32 (0.20)</td>
<td></td>
<td>2.39 (0.16)</td>
</tr>
<tr>
<td>γ_2</td>
<td>2.55</td>
<td>2.68 (0.13)</td>
<td></td>
<td>2.70 (0.11)</td>
</tr>
<tr>
<td>σ^2_{u1}</td>
<td>6.90</td>
<td>5.40 (2.23)</td>
<td></td>
<td>5.44 (0.87)</td>
</tr>
<tr>
<td>σ^2_{u2}</td>
<td>3.66</td>
<td>3.38 (0.23)</td>
<td></td>
<td>3.28 (0.17)</td>
</tr>
<tr>
<td>$\rho_{u1,u2}$</td>
<td>0.7</td>
<td>0.63 (0.03)</td>
<td></td>
<td>0.68 (0.03)</td>
</tr>
<tr>
<td>σ^2_ε</td>
<td>1.23</td>
<td>1.29 (0.07)</td>
<td></td>
<td>1.35 (0.04)</td>
</tr>
<tr>
<td>$H(\gamma_0)$</td>
<td>0.08</td>
<td>0.11 (0.05)</td>
<td></td>
<td>0.11 (0.02)</td>
</tr>
</tbody>
</table>
Simulation results: Parameter estimates

<table>
<thead>
<tr>
<th>Param</th>
<th>True</th>
<th>Estimates: Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 measurements</td>
</tr>
<tr>
<td>γ_1</td>
<td>2.29</td>
<td>2.32 (0.20)</td>
</tr>
<tr>
<td>γ_2</td>
<td>2.55</td>
<td>2.68 (0.13)</td>
</tr>
<tr>
<td>$\sigma^2_{u_1}$</td>
<td>6.90</td>
<td>5.40 (2.23)</td>
</tr>
<tr>
<td>$\sigma^2_{u_2}$</td>
<td>3.66</td>
<td>3.38 (0.23)</td>
</tr>
<tr>
<td>$\rho_{u_1 u_2}$</td>
<td>0.7</td>
<td>0.63 (0.03)</td>
</tr>
<tr>
<td>σ^2_{ϵ}</td>
<td>1.23</td>
<td>1.29 (0.07)</td>
</tr>
<tr>
<td>$H(\gamma_0)$</td>
<td>0.08</td>
<td>0.11 (0.05)</td>
</tr>
</tbody>
</table>

2 measurements

4 measurements

Estimate of $\sigma^2_{u_1}$
Simulation results: Parameter estimates

<table>
<thead>
<tr>
<th>Param</th>
<th>True</th>
<th>Estimates: Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 measurements</td>
</tr>
<tr>
<td>γ₁</td>
<td>2.29</td>
<td>2.32 (0.20)</td>
</tr>
<tr>
<td>γ₂</td>
<td>2.55</td>
<td>2.68 (0.13)</td>
</tr>
<tr>
<td>σ_{u₁}²</td>
<td>6.90</td>
<td>5.40 (2.23)</td>
</tr>
<tr>
<td>σ_{u₂}²</td>
<td>3.66</td>
<td>3.38 (0.23)</td>
</tr>
<tr>
<td>ρ_{u₁u₂}</td>
<td>0.7</td>
<td>0.63 (0.03)</td>
</tr>
<tr>
<td>σ_{ε}²</td>
<td>1.23</td>
<td>1.29 (0.07)</td>
</tr>
<tr>
<td>H(γ₀)</td>
<td>0.08</td>
<td>0.11 (0.05)</td>
</tr>
</tbody>
</table>

Graphs:

- **2 measurements**
- **4 measurements**
Correcting the diet-disease association

Regression calibration
We replace T_i by $E(T_i|R_i)$ in the disease model

Simulation study
- We generated disease status (0/1) according to a logistic model
 \[
 \Pr(D_i = 1 | T_i) = \frac{\exp(\alpha + \beta T_i)}{1 + \exp(\alpha + \beta T_i)}
 \]
 - ...using $\beta = 0.2$
 - α chosen to give a 10% disease probability

Compare with 3 alternative methods for estimating β
- ‘Naive’ method: Use mean(R_{i1}, R_{i2}) in place of T_i
- Using linear regression calibration to obtain $E(T_i|R_i)$
- Using an episodic-consumers model to obtain $E(T_i|R_i)$
Correcting the diet-disease association

Regression calibration
We replace \(T_i \) by \(E(T_i|R_i) \) in the disease model

Simulation study
- We generated disease status (0/1) according to a logistic model

\[
\Pr(D_i = 1|T_i) = \frac{\exp(\alpha + \beta T_i)}{1 + \exp(\alpha + \beta T_i)}
\]

- \(\beta = 0.2 \)
- \(\alpha \) chosen to give a 10% disease probability

Compare with 3 alternative methods for estimating \(\beta \)
- ‘Naive’ method: Use \(\text{mean}(R_{i1}, R_{i2}) \) in place of \(T_i \)
- Using linear regression calibration to obtain \(E(T_i|R_i) \)
- Using an episodic-consumers model to obtain \(E(T_i|R_i) \)
Comparison with alternative methods: log(OR)s
Comparison with alternative methods: log(OR)s

Never & episodic consumers model

Using observed measurements

Using T_i

NEC model

Average(R_{i1}, R_{i2})

Using observed measurements

Using T_i
Comparison with alternative methods: log(OR)s

Never & episodic consumers model

Using T_i

NEC model

Linear Regression Calibration

Using T_i

Linear RC model

Using observed measurements

Average(R_{i1}, R_{i2})

Using T_i
Comparison with alternative methods: log(OR)s

Never & episodic consumers model

Using observed measurements

Linear Regression Calibration

Episodic consumers model
Some comments

- Some parameters of the model may be badly estimated using only two reported measurements R_{i1}, R_{i2} per person.

- The never- and episodic-consumers model provides a method for correcting the diet-disease association for measurement error.

- ...but we may often be able to achieve similar results using standard linear regression calibration or episodic-consumers model.

- We have not yet looked at other aspects of the different approaches such as coverage probabilities.

- There may be situations in which it is useful to be able to correctly model the association between true intake and reported intake using the never- and episodic-consumers model.
Some comments

- Some parameters of the model may be badly estimated using only two reported measurements R_{i1}, R_{i2} per person.

- The never- and episodic-consumers model provides a method for correcting the diet-disease association for measurement error.

- ...but we may often be able to achieve similar results using standard linear regression calibration or episodic-consumers model.

- We have not yet looked at other aspects of the different approaches such as coverage probabilities.

- There may be situations in which it is useful to be able to correctly model the association between true intake and reported intake using the never- and episodic-consumers model.
Some comments

- Some parameters of the model may be badly estimated using only two reported measurements R_{i1}, R_{i2} per person.

- The never- and episodic-consumers model provides a method for correcting the diet-disease association for measurement error.

- ...but we may often be able to achieve similar results using standard linear regression calibration or episodic-consumers model.

- We have not yet looked at other aspects of the different approaches such as coverage probabilities.

- There may be situations in which it is useful to be able to correctly model the association between true intake and reported intake using the never- and episodic-consumers model.
Some comments

- Some parameters of the model may be badly estimated using only two reported measurements R_{i1}, R_{i2} per person.

- The never- and episodic-consumers model provides a method for correcting the diet-disease association for measurement error.

- ...but we may often be able to achieve similar results using standard linear regression calibration or episodic-consumers model.

- We have not yet looked at other aspects of the different approaches such as coverage probabilities.

- There may be situations in which it is useful to be able to correctly model the association between true intake and reported intake using the never- and episodic-consumers model.