Analyzing Longitudinal Data With A Floor Level At Zero

Saskia le Cessie¹,², Friedo W. Dekker¹, Diana C. Grootendorst¹
¹Department of Clinical Epidemiology
²Department of Medical Statistics and Bioinformatics
Leiden University Medical Centre
Dutch follow-up study of renal patients

- 1526 end-stage renal failure patients who start dialysis

- Measurements at start dialysis, 3 months, 6 months and thereafter every 6 months (Here follow-up of 3 years)

- Two different forms of dialysis: hemodialysis (HD) and peritoneal dialysis (PD)

- Outcome: renal function (Glomerular filtration rate, GFR)
- Goal: model the pattern of GFR over time
Some problems

• The kidneys can stop working completely. Then GFR is per definition equal to 0. This is called anuria.

• Sometimes there are incidental GFR=0 measurements

• Patients with PD have on average a larger GFR value at start of dialysis.
GFR patterns for 4 different patients
The distribution of the gfr measurements at different time points

Visit 0

Visit 1

Visit 2

Visit 7
Observed means over time

Observed mean GFR

![Graph showing the observed mean GFR over time with two lines representing HD and PD treatments. The graph includes error bars for each data point.](image-url)
Question: how to model this type of data?

• Three approaches

 • Linear mixed models

 • Two-part mixed models

 • Transition models (Markov approach)
Approach 1: linear mixed model

- Remove all measurements where patients are anuric (two subsequent GFR=0 measurements).

- Then perform a standard repeated measures analysis.

- Underlying idea: model the GFR trajectory before anuria.
What are you doing here?

• You do not model the mean GFR over time. This model implicitly imputes values for those patients with GFR =0

• Observations are left out if GFR=0. Not missing not at random
Second approach: Two-part mixed models (Tooze 2002)

- Assume that GFR measurements (notation \(Y_{ij} \)) result from a mixture distribution:

\[
\begin{align*}
 f(y) = \begin{cases}
 \Pr(Y = 0) & \text{if } y = 0 \\
 (1 - \Pr(Y = 0))g(y) & \text{if } y > 0 \\
 0 & \text{if } y < 0
\end{cases}
\]

- Occurrence variable

\[
R_{ij} = \begin{cases}
 0 & \text{if } Y_{ij} = 0 \\
 1 & \text{if } Y_{ij} > 0
\end{cases}
\]

- Model the occurrence \(\Pr(R_{ij} = 1) \) and the distribution of \(Y_{ij} | Y_{ij} > 0 \) (the intensity)
Model:

- Occurrence by logistic regression with random person effect \(U_i \)

 \[
 \text{logit}(\Pr (R_{ij}=1)) = \theta X_{ij} + U_i
 \]

- Intensity with a linear model with random person effect \(V_i \)

 \[
 \log(Y_{ij}|Y_{ij}>0) \sim N(\beta X_{ij} + V_i, \sigma_e^2)
 \]

- Random effects are jointly normal

 \[
 \begin{bmatrix}
 U_i \\
 V_i
 \end{bmatrix}
 \sim N\left(\begin{bmatrix} 0 \\
 0 \end{bmatrix},
 \begin{bmatrix}
 \sigma_u^2 & \rho \sigma_u \sigma_v \\
 \rho \sigma_u \sigma_v & \sigma_v^2
 \end{bmatrix}\right)
 \]
Estimation

- Likelihood is rather complex

- Tooze (2002) wrote a macro using PROC NLMIXED in SAS to maximize the likelihood
Results

<table>
<thead>
<tr>
<th></th>
<th>Occurrence</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>7.71 (0.54)</td>
<td>1.24 (0.05)</td>
</tr>
<tr>
<td>therapy</td>
<td>1.09 (0.24)</td>
<td>0.20 (0.04)</td>
</tr>
<tr>
<td>visit1</td>
<td>-3.77 (0.39)</td>
<td>-0.31 (0.02)</td>
</tr>
<tr>
<td>visit2</td>
<td>-5.07 (0.39)</td>
<td>-0.46 (0.02)</td>
</tr>
<tr>
<td>visit3</td>
<td>-6.42 (0.41)</td>
<td>-0.67 (0.02)</td>
</tr>
<tr>
<td>visit4</td>
<td>-7.62 (0.43)</td>
<td>-0.77 (0.03)</td>
</tr>
<tr>
<td>visit5</td>
<td>-8.61 (0.45)</td>
<td>-0.93 (0.03)</td>
</tr>
<tr>
<td>visit6</td>
<td>-9.25 (0.47)</td>
<td>-1.01 (0.03)</td>
</tr>
<tr>
<td>visit7</td>
<td>-10.06 (0.49)</td>
<td>-1.09 (0.04)</td>
</tr>
<tr>
<td>Variance</td>
<td>13.18 (1.17)</td>
<td>0.39 (0.02)</td>
</tr>
<tr>
<td>random effect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covariance</td>
<td>1.46 (0.10)</td>
<td></td>
</tr>
<tr>
<td>random effects</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th></th>
<th>Occurrence</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>7.71 (0.54)</td>
<td>1.24 (0.05)</td>
</tr>
<tr>
<td>therapy</td>
<td>1.09 (0.24)</td>
<td>0.20 (0.04)</td>
</tr>
<tr>
<td>visit1</td>
<td>-3.77 (0.39)</td>
<td>-0.31 (0.02)</td>
</tr>
<tr>
<td>visit2</td>
<td>-5.07 (0.39)</td>
<td>-0.46 (0.02)</td>
</tr>
<tr>
<td>visit3</td>
<td>-6.42 (0.41)</td>
<td>-0.67 (0.02)</td>
</tr>
<tr>
<td>visit4</td>
<td>-7.62 (0.43)</td>
<td>-0.77 (0.03)</td>
</tr>
<tr>
<td>visit5</td>
<td>-8.61 (0.45)</td>
<td>-0.93 (0.03)</td>
</tr>
<tr>
<td>visit6</td>
<td>-9.25 (0.47)</td>
<td>-1.01 (0.03)</td>
</tr>
<tr>
<td>visit7</td>
<td>-10.06 (0.49)</td>
<td>-1.09 (0.04)</td>
</tr>
<tr>
<td>Variance random effect</td>
<td>13.18 (1.17)</td>
<td>0.39 (0.02)</td>
</tr>
<tr>
<td>Covariance random effects</td>
<td>1.46 (0.10)</td>
<td></td>
</tr>
</tbody>
</table>

- PD patients have higher intensity and lower probability on GFR=0 measurement
- There were no significant therapy*visit interactions
Problems

• Correlation between repeated measures is rather simple (random intercept model)

• If random effects are correlated: estimation takes very long However, ignoring the correlation could yield biased estimates (Su, Tom, Farewell (2009))

• It does not use the fact that a patient is anuric after two GFR=0 measurements
Approach 3. Transition models (Markov approach)

- Use transition models (Diggle, Liang, Zeger (1994))

- Rewrite multivariate density

\[f(y_{i1}, y_{i2}, \ldots, y_{ij}) = f(y_{i1}) f(y_{i2}|y_{i1}) \ldots f(y_{ij}|y_{ij-1}, \ldots, y_{i1}) \]

Markov assumption:

- \(f(y_{ij}|y_{ij-1}, \ldots, y_{i1}) = f(y_{ij}|y_{ij-1}) \)

- Likelihood

\[\prod_{i} f(y_{i1}) \prod_{i,j>1} f(y_{ij}|y_{ij-1}) \]

- Maximize both parts separately
Model for $f(y_{ij} | y_{ij-1})$

- Use two part mixture distribution:

$$f(y_{ij} | y_{ij-1}) = \begin{cases} \Pr(R_{ij} = 0 | y_{ij-1}) & \text{if } y_{ij} = 0, y_{ij-1} > 0 \\ \Pr(R_{ij} = 1 | y_{ij-1})g(y_{ij} | y_{ij-1}) & \text{if } y_{ij} > 0, y_{ij-1} > 0 \\ 1 & \text{if } y_{ij} = 0, y_{ij-1} = 0 \\ 0 & \text{if } y_{ij} > 0, y_{ij-1} = 0 \end{cases}$$

- with the occurrence variable

$$R_{ij} = \begin{cases} 0 & \text{if } Y_{ij} = 0 \\ 1 & \text{if } Y_{ij} > 0 \end{cases}$$
Model for $f(y_{ij}|y_{ij-1})$
Model for $f(y_{ij} | y_{ij-1})$
Applying this model

- Restructure data

- Logistic model for $\Pr(R_{ij}=1|y_{ij-1})$
 - $\text{logit}(\Pr(R_{ij}=1|y_{ij-1})) = \theta_1 X_{ij} + \theta_2 y_{ij-1}$

- Linear regression model for $g(y_{ij-1}|y_{ij-1})$ (or for $\log(y_{ij-1})$)
 - $g(y_{ij-1}|y_{ij-1}) = N(\beta_1 X_{ij} + \beta_2 y_{ij-1}, \sigma_e^2)$
Application to our dataset

• We distinguished first zero and second (subsequent) zero.

• Two logistic models:
 • Probability on first zero \((R_{ij}=0, R_{ij-1}=1)\)
 • Probability on second zero \((R_{ij}=0, R_{ij-1}=0)\)

• After second zero, a patient is aneuric (all subsequent measures are 0)

• Two intensities:
 • \(Y_{ij}\) given \(R_{ij}=1\) and \(R_{ij-1}=1\)
 • \(Y_{ij}\) given \(R_{ij}=1\) and \(R_{ij-1}=0\)
Results, occurrence of first zero

- \(\text{logit}(R_{ij}=1) = 0.12 \text{ (se 0.16)} + 0.30 \text{ (se 0.10)} \times \text{therapy} + 1.33 \times \log(\text{GFR}_{ij-1}) \)

- PD patients have a \(\exp(0.30) = 1.35 \) higher odds of \(R=1 \) (GFR>0) given the previous GFR value

No significant effects of: \(\text{GFR}_{ij-1} \times \text{therapy}, \text{GFR}_{ij-2}, \text{visit number} \)
Occurrence of anuria (second zero)

- \(\text{Pr} (R_{ij}=1 \mid R_{ij-1}=0) = 0.50 + 0.15 \ (\text{se} \ 0.12) * \text{therapy} -1.17 \ \log(\text{GFR}_{ij-2}) \)

- No significant difference between two treatment groups
Intensity when $GFR_{ij} > 0$ and $GFR_{ij-1}>0$

- Markov assumption did not hold; Current GFR depends on previous two measurements

- Significant interaction between visit and effect of previous GFR
 - Effects of GFR_{j-1} on visit 1 was clearly different

- Visit 1: $\log(GFR_{ij}) = 0.21 + 0.05 \text{ (se 0.04)} \times \text{therapy} + 0.61 \times \log(GFR_{ij-1})$

- Visit 2 to 7: $\log(GFR_{ij}) = -0.19 + 0.04 \text{ (se 0.02)} \times \text{therapy} + 0.73 \times \log(GFR_{ij-1}) + 0.18 \log(GFR_{ij-2})$

- PD patients have on average $\exp(0.04) = 1.04$ times higher GFR, given previous GFR responses ($p=0.04$)
Intensity when $GFR_{ij}>0$ and $GFR_{ij-1}=0$

\[
\log(GFR_{ij}) = -0.50 - 0.15 \text{ (se 0.12)} \times \text{therapy} + 1.17 \log(GFR_{ij-2})
\]
Conclusion from transition model

- PD patients have a higher occurrence probability and a have slightly higher GFR, after correction for previous GFR measurements

- PD patients have a higher mean intensity, given the previous GFR measurement
Marginal means

- $E[Y_j]$ can be estimated
 - Analytically, using recursively that $E[Y_j] = E[E[Y_j|Y_{j-1}]]$
 - By simulation from joint distribution
 $$f(y_{i1}) f(y_{i2}|y_{i1})...f(y_{ij}|y_{i-1},...,y_{i1})$$
Marginal means

Marginal means

Probability of anuria

Visit number

Visit number

GFR

Probability

HD

PD
Conclusions

• Transition models using a two part mixture distribution can be used to model data with zero’s

• Advantages of this approach:
 • Can be performed with standard software
 • Yields interpretable parameters
 • Corrects for baseline differences